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Abstract—The urban private car as convenient transporta-
tion plays an essential role in daily human life, which ac-
cordingly produces massive trajectory data by built-in GPS
tracking devices. These data offer a new opportunity to mine
and explore travel behavior for private car users. Existing
works mining travel behavior mainly focus on modeling the
sequential contexts while seldom considering the semantic
information of the travel behavior, which led to a shallow
understanding of users’ travel regularity. To capture valuable
information on users’ travel mode, we design a semantic-aware
method named as Semantic Long Short-Term Memory(Sem-
LSTM). Specifically, we exploit an LSTM network as the
foundation of a unified travel behavior prediction framework
and introduce two types of semantic information, including
area of interest (AOI) properties and user interests. We aim
to explore individual travel behavior for a single private car
user and conduct extensive experiments on real-life private
car datasets. The experimental results demonstrate that Sem-
LSTM is very suitable for capturing semantic content and
improve prediction performance on private car users. In detail,
for the travel behavior prediction, achieve average prediction
accuracy of 0.82, recall of 0.80 and F1-score of 0.81.

Index Terms—Private car, Location prediction, Semantic
information, Sequential contexts, Long Short-Term Memory

I. INTRODUCTION

With the development of economic society, private cars
as popular transportation enter people’s daily life. Due to
the flexibility and convenience of private cars, the number
of urban private car owners increases yearly [1]–[3]. While
the limited street and parking facilities are not adapt to the
increasing usage of vehicles, various traffic troubles also
follow, such as environmental pollution, traffic jam, severe
traffic congestion, etc [4]. Fortunately, in the background of
the intelligent transportation system (ITS), a large amount
of trajectory data is produced [5]. These trajectory data
offer a new opportunity to percept, mine, and explore travel
behavior for private car users, provide a key solution to
address these urban traffic problems [6], [7].

Fig.1 depicts an example of the travel behavior of private
car users: given the previous location records, to predict
which location the users will go? The number 1-5 stands
for the last five location points of the private car user just
visited, meaning the users’ travel sequence patterns. By
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Fig. 1. An example of semantic travel behavior: to predict the next location
for a private car user

analyzing the long term location sequence of the individual
user, we can infer that the next location of the private car.

To understand private car users’ travel behavior, consider-
ing the sequential contexts of trajectory is necessary because
the successive location is usually correlated [8]. Recur-
rent neural networks (RNNs) (e.g.,long short-term memory
(LSTM) networks [9]) usually are employed to model
and mine the sequential contexts of travel behavior [10]–
[12]. Studies in [13] exploited an extended RNN model
to capture the correlation of successive trajectory records,
and in [14] proposed a multi-modal embedding RNN to
model the complicated sequential transitions. Recently, with
the advantage of LSTM is suitable for modeling long
term dependence, researchers in [15] designed a variant
of LSTM to find the sequential context, in [16] combined
dimensionality reduction algorithm and LSTM to model
spatiotemporal sequence feature. The various existing work
of travel behavior prediction focus on exploring the se-
quential contexts for users, which have been proven to be
effective for improving the model’s performance. Moreover,
we observe that the semantic information, including AOI
properties and user interests, are key factors that affect
users’ travel behavior. For example, users always work
in a fixed office building every day and relax in a park
weekly. The semantic information provides new insight into
understanding the users’ daily travel behavior. However, all
previous travel bahavior prediction models usually ignore
the semantic information of trajectory, which motivates this
paper.



To bridge this gap, we systematically study the two types
of semantic information and exploit them to improve the
performance of the next location prediction task. Specifi-
cally, inspired by the success of LSTM for modeling the
sequential contexts in location prediction [17], we design
a unified framework: a semantic LSTM (Sem-LSTM) for
users’ travel behavior prediction. To consider the influence
of AOI properties, we design an AOI extraction method to
label the AOI tag for all trajectory points. To consider the
influence of user interest, we design evaluation factors to
measure the degree of user interest. Then we are incorpo-
rating the extracted semantic information into an extended
LSTM to capture the semantic contents dynamically. In
our work, all trajectory records of a user are feed into the
Sem-LSTM network to model mobility regularity and user
interest. In summary, the main contributions are as follows:

• To better understand the semantic information of the
trajectory data, we present a clustering algorithm to
label the AOI tag for each trajectory point and design
an evaluation factor to indicate the user interests of
every location.

• We propose a unified framework named Sem-LSTM
for mining travel behavior by considering semantic
information. The network is naturally incorporating
semantic content in the neural network to capture more
details of the users’ travel patterns.

• We compare the Sem-LSTM with six baseline mod-
els. Empirical results on five different users’ datasets
perform excellent prediction competence for different
evaluation metrics.

The remainder of this study is organized as follows. First,
we present a brief review of related works in Section II.
Following that, we introduce the definitions and concepts
for the private car trajectory in Section III. In Section IV, we
detail the proposed Sem-LSTM. Then we introduce real-life
private car datasets and evaluate the Sem-LSTM in Section
V. Finally, we conclude our work and describe future work.

II. RELATED WORK

In this section, we briefly outline the works related to
our research.

Firstly, to model the mobility regularity, various existing
work focuses on the spatiotemporal information. For exam-
ple, Huang et al. explored the spatiotemporal information
for location records, designed an ST-LSTM to predict users’
next location [18]. Zhao et al. considered that neighbor
check-ins and spatio-temporal intervals are essential for
modeling user behaviors, propose a Spatio-Temporal Gated
Network (STGN). Specifically, they introduced a spatio-
temporal gate to capture the spatio-temporal relationships
[19]. Yang et al. focused on human convergence patterns
to predict people’s travel mode, monitor urban mobility,
and extract eight distinct human mobility patterns [20]. Cao
et al. proposed a framework based on hierarchical spa-
tiotemporal data under a location-based environment. [21].

However, these methods merely consider the spatiotemporal
correlation and ignore the semantic contents.

Secondly, there is plenty of work aim to the sequential
patterns of collected data. For example, Tang et al. consid-
ered that sequential patterns play an important role in Top-
N item recommendation, and proposed a unified network
structure to capture general preferences and sequential pat-
terns [22]. He et al. focused on the sparse sequential data in
personalized prediction, designed a similarity-based method
for item recommendation [23]. Lonjarret et al. focused
on the frequent sequences, which is employed to identify
the most relevant part in historical records for sequential
recommendation [24]. However, unlike news and music,
the interactions between private car users and location
point require people to arrive at an actual place. Hence,
it’s important to consider spatial contextual information.
Recently, an increasing number of work-related to spatial
sequence data. Such as Zhao et al. utilized a pairwise
preference ranking method to incorporate the geographical
influence. Furthermore, it captures the contextual check-in
information, proposed a temporal embedding model [25].
Cui et al. considered that different users demonstrate a
different spatial preference. Thus, they designed a Distance-
to-Preference network to model spatial influence [26].

In summary, to model the mobility of private car users,
both spatiotemporal information and sequential pattern are
adopted. Additionally, we also incorporate the semantic in-
formation into our model, capable of our mobility prediction
task for private car users.

III. PRELIMINARIES

In this section, we introduce related definitions and
concepts for users’ travel behavior prediction.

A. Definitions

Definition 1: Spatio-temporal Point: Let the couple P
= (l, t) stands for the spatio-temporal point P, where t
represents the time a user visit location l = (x, y) . Under the
coordinate reference system (GCJ), x and y are the spatial
coordinates.

Then according to couple P, we can obtain the AOI
tag after calling the api interface of the reverse address
encoding of Amap [27]. Finally, we obtain the trajectory
with semantic information as shown in Definition2.

Definition 2: Semantic Spatio-temporal Point: Let the
triple Ps = (l, t, a) stands for the semantic spatio-temporal
point Ps, a is the AOI tag which is from Amap api.

A private car’s duration time represents that the car stay
in an area for a while, which is defined as St. Let ts be the
start time of stay behavior and te be the end time of stay
behavior, the St=te-ts.

Definition 3: Private Car Trajectory: Let U stands for
a driver. A private car trajectory T = P1, P2, . . . , Pk

is a series of spatio-temporal points, describing the stay
location of driver U. When it takes semantic and stay time
information into consideration, the trajectory T is created



as Ts = (l1, t1, a1, s1), (l2, t2, a2, s2), . . . , (lk, tk, ak,
sk).

B. Problem Statement

The travel behavior prediction problem is formulated as
follows: if U is a car driver, Tu stands for his/her trajectory.
According to Tu ∪ pk, being pk the current location, the
purpose is to predict the next location pk+1.

IV. METHODOLOGY

This section introduces the entire framework for Sem-
LSTM. An efficient process is constructed to collect, pro-
cess, and mine the data in Fig.2. The whole framework fo-
cuses on semantic information, which mainly includes two
parts, namely AOI property, user’s interest. The proposed
Sem-LSTM network can dynamically capture the semantic
information and spatio-temporal contexts for predicting the
next location. A detailed description of as follows.

A. AOI Property Match

In this section, we aim to label the AOI tag for all
location point. The raw trajectory is made up of coordinate
points, merely include longitude and latitude. So we employ
the Amap [27] interface to match an AOI tag for each
coordinate point. To solve the problem efficiently, two main
preprocessing steps for AOI match are described in detail
as follows:

Firstly, to deal with the location drift [28], a traditional
density-based clustering algorithm (DBSCAN) is adopted
to gather these adjacent coordinate points. DBSCAN has
the capability of discovering clusters with arbitrary shapes.
After clustering, all locations in each cluster stand for the
same location.

Secondly, based on the previous step, We obtain the
clustering result of the raw data. Using the AOI tag of the
coordinate point, noise points or clusters with the same AOI
can be merged in the same cluster. AOI refers to the area
of interest in the electronic internet map. It contains four
necessary information, name, address, category, latitude,
and longitude coordinates. Generally, a residential area, a
university, and an office building, an industrial park, are re-
garded as an AOI [27]. Through the reverse address coding
interface of Amap, we can obtain the AOI information to
which each coordinate point belongs. AOI type and AOI
name are the Semantic information, as shown in table I.
Given the raw location point, this API interface will return
the name of the AOI. If two coordinate points belong to
the same AOI, the two coordinate points are merged into a
location record.

B. User Interest Extraction

User interest indicates the user’s preference for different
visit locations, including the duration and frequency of a car
user visit a place. In this section, we design an evaluation
factor of M to measure the degree of user interest. Fig.3
illustrates an example for user interest in a different place:

Fig. 2. Overview of framework.

Fig. 3. An example of semantic information for a private car user.

the location of L1 is a restaurant; the user visits it seven
times every week and stays with half an hour. The location
of L2 is a park. The user visits it once a week and stays with
two hours. User interest is a key factor in understanding the
mobility of users. A detailed description of user interest
extraction as follows.

1) Duration of Visit: One signal to infer the importance
of a location is the duration of the visit; the value of
duration indicates a user’s preference of the location [29].
For example, a user usually stays in a company for 3 hours,
while a convenience store for 15 minutes. The company
may be where car users go to work, and the convenience
store is just a place visited occasionally. Earthly, we think
that this company is a frequent destination for the user. It is
enlightening to analyze the importance of different location
given an aspect of stay time. For each user, we define Pt to
indicate the degree of the duration of the visit, which can
be obtained by equation (1). where Ri represents the user’s
i−th visit location, Send and Sstart are the starting and ending
time of visiting respectively. The Pt ratio represents the
proportion of i−th duration to 24 hours a day, n represents
the number of all locations visited by the user.

Pt (Ri) = (Send − Sstart) /24 ∗ 60, i ∈ [0, n] (1)

2) Visit Frequency: Users’ visit frequency is also a key
factor of the user’s interest. If a user visits more in a
location, He/She frequency more often [29]. For example,
a car user would go to the supermarket for shopping every
three days, while a playground once a month. If calculated
in one month, visiting the supermarket is 10, while the
playground is only 1. We may think that the supermarket
is more important than the playground. It’s essential to
consider visit frequency to our model. Similarly, as an



TABLE I
AOI PROPERTY FOR RAW COORDINATE POINT

AOI Property
Latitude,longitude AOI name AOI type

112.962039,28.186914 Orange islet scenic spot park
112.978751,28.192424 Changsha International Finance Square shop
112.93642,28.1835431 Yuelu Mountain tourist attraction
112.981153,28.192347 The People’s Bank Of China bank
112.987576,28201759 Changsha No.1 Middle School school

indicator of stay time weight, Pf can be obtained by (2).
Where N (Ri) is the number of car stay in i−th location.
Nall is the total number of user’s location records.

Pf (Ri) = N (Ri) /Nall, i ∈ [0, n] (2)

For these reason, it is important to consider the user
inrerest on the prediction task. We formulate equation (3)
to measure the importance of users interest.

M (Ri) = wt ∗ Pt (Ri) + wf ∗ Pf (Ri) (3)

Where the wf and wt are adjustable variables denoting
the weights on duration and visit frequency. M (Ri) is the
factor denotes user interest.

C. Semantic LSTM

This section consists of two sub-sections: (1) we intro-
duce a standard LSTM network as our base network; (2)
we then detail the proposed semantic-based LSTM network
(Sem-LSTM).

1) Standard LSTM: The stay data of a private car is a
sequence with temporal and spatial features. Generally, in
the early stage, Recurrent Neural Network(RNN) is usually
used to process sequence data because of its recurrent
network structure can achieve memory function. RNN is
an extension of a conventional feed-forward neural network,
but standard RNN has the gradient vanishing or exploding
problems. To solve this problem, a Long Short-term Mem-
ory network(LSTM) was proposed and achieved superior
performance. Additionally, LSTM has three gates and a
cell memory state; these gates can filter data and only keep
important information. With the help of these gates, the
LSTM network can capture long-range dependencies in a
sequential pattern. Thus, in this work, we employ it as a
module to predict the next location.

In an LSTM network, the update process of each cell can
be computed as follows:

X =

[
ht−1

xk

]
(4)

ft = σ (Wf ·X + bf ) (5)

it = σ (Wi ·X + bi) (6)

ot = σ (Wo ·X + bo) (7)

ct = ft � ct−1 + it � tanh (Wc ·X + bc) (8)

ht = ot � tanh (ct) (9)

where Wf ,Wi,Wo ∈ Rd×2d are weighted matrices. bf ,bi,bo
∈ Rd are bias vectors during training of LSTM network.
The xk indicates the embedding vector of location in input
gate. Here, σ stands for the sigmoid function, and � denotes
the element-wise multiplication. The vector of hidden layer
is ht.

Finally, the last hidden vector htN is a representation of
input location sequence. In this work, we use LSTM to au-
tomatically capture user inner preferences. The probability
result of a user u visit location xk at time point as followed:

outN+1,xk
=

(
hu
tN

)T
xk (10)

2) Sem-LSTM: The semantic information of location is
vital when modeling users’ travel patterns. We can get more
accurate modeling results if the semantic aspects informa-
tion are considered. To make use of semantic information,
we propose a base network called semantic LSTM (Sem-
LSTM), Which can learn the non-linear dependency repre-
sentation from historical location records. In this model, we
define a AOI property feature vector auti and a user interest
vector luti to incorporate semantic information.

At time point ti, we first embed location informantion
into a latent space. Then, Sem-LSTM takes the embedded
vector with the AOI property feature and user interest vec-
tor, a triple

(
xu
ti ,a

u
ti , l

u
ti

)
, as input at each time step. Hence,

the output of Sem-LSTM represents the accumulated influ-
ence of AOI property and user interest contexts from the
past location records. Fig.4 illustrates the architecture of
Sem-LSTM.

In the hidden layer of Sem-LSTM, we update each hidden
vector hu

ti after receiving the current input and the memory
hu
ti−1

from the past location activities. In Sem-LSTM, we
have

hu
ti = LSTM

(
Wxx

u
ti +Waa

u
ti +Wll

u
ti ,h

u
ti−1

)
(11)

where Wx ∈ Rd×d, Wa ∈ Rd×d and Wl ∈ Rd×d

are transition matrices. The learned hidden vector hu
ti is

a dynamic component of Sem-LSTM and can be regarded
as the representation of user u at time point ti. In nature,



TABLE II
DETAILS OF EACH CAR DATA SET

Car ID #Stay #Time #Latitude #Longitude #City

107737 923 2015/7/1-2017/2/27 37.17-42.24 114.76-119.52 Beijing
108470 930 2015/7/1-2016/11/30 39.75-39.82 116.33-116.56 Beijing
116853 1770 2015/7/1-2017/9/30 30.33-30.59 113.94-114.41 Wuhan
125870 1539 2015/7/1-2016/6/16 23.13-23.54 116.40-117.13 Shantou
379972 996 2015/8/3-2016/7/27 30.08-33.43 116.24-120.90 Yangzhou

it reflects dynamic user preferences for visit location under
different semantic contexts.

We also design a stationary component mu to represents
the long term user interest, and can be obtained by equation
(3): mu = (mR1

,mR2
, . . . ,mRn

). Therefore, in this work,
the user semantic information is defined as a function of
both dynamic state hu

ti and stationary state mu. We then to
predict the next location for target users by computing the
dot-product of user and semantic representations. Lastly, the
predicted probability that user u visits a location xk at time
point tN+1 can be obtained by the following operation:

outN+1,xk
=
(
WNh

u
tN+Wmmu

)T(
Wxxk+Waa

u
N+1+Wll

u
N+1

)
(12)

where WN ∈ Rd×d and Wm ∈ Rd×d are the parameters
of the output layer, WNhu

tN +Wmmu represents the user
representation, and Wxxk+Waa

u
N+1+Wll

u
N+1 represents

the AOI representation. Note that mu is determined by the
Pt and Pf According to equation (1) and equation (2).

V. EXPERIMENT AND RESULT

A. Data Set

The evaluation is conducted over real-world private
car trajectory datasets, which are obtained in [30], [31].
The data contains users’ located-in information, including
geographical coordinates, timestamps, etc. We utilize the
inverse address encoding interface of Amap to obtain the
AOI for each coordinate point in the dataset. In this study,
a located-in record is a quadri-tuple composed of a user, an

Fig. 4. The architecture of Sem-LSTM.

AOI, the geographical location of the AOI, and the corre-
sponding located-in timestamp. All the located-in records
in these datasets were treated as user sequences. Also, we
performed a preprocessing step on these datasets to filter
out inactive users and unpopular AOIs.

To protect the privacy of private car owners, all
sensitive information was removed from the raw
trajectories. All researchers are subject to a strict
non-disclosure license. For the private car trajectory
dataset, instructions, and Python code packet, please see
https://github.com/HunanUniversityZhuXiao/PrivateCarTra-
jectoryData.

In our prevous work of [7], designing an evaluation factor
to measure users’ mobility regularity for private car users.
The factor is a spatial-temporal entropy rate represented by
H . If the value of H is greater than 2.5, the car’s travel
pattern is hard to identify. Therefore, to verify our model,
we selected a five-car trajectory whose value of H less than
2.5. Table II details the five cars quantity information. where
Car ID stands for the number of the car trajectory data
set, #Stay stands for the number of stays reflected from
the data. #Time stands for the time range of car trajectory.
#Latitude and #Longitude stand for the area range of stay
point. #City stands for the user’s permanent residence.

B. Baselines

Considering the spatio-temporal characteristics of private
car trajectory data, we compared our method with several
baselines, including SVM, RF, RNN, LSTM, GRU, and ST-
GRU.

SVM: Support Vector Machine(SVM) is a generalized
linear classifier by supervised learning, which perform well
in time series problem.

RF: Random Forest(RF) is a classifier containing multi-
ple decision trees, which is flexible, easy to use. But it is
prone to overfitting.

RNN: Recurrent Neural Networks (RNN) are a class of
Artificial Neural Networks that can process a sequence of
inputs in deep learning, which is usually used for time series
forecasting problems. But for long-term sequences of data,
it usually has a gradient explosion problem, resulting in low
output.

LSTM: Long Short-Term Memory(LSTM) is a variation
of the recurrent net, aims to solve the vanishing gradient



problem. By helping preserve the error that can be back-
propagated through time and layers, LSTM can retain data
over many time steps(over 1000).

GRU: Gated Recurrent Unit can be considered a variation
of the long short-term memory (LSTM) unit because both
have a similar design and produce equal results in some
cases.

ST-GRU: ST-GRU is a GRU-based model for next lo-
cation prediction, which can improve the performance of
prediction by incorporating both the geographical and tem-
poral context information within the recurrent architecture.

C. Metrics

we emploied three standard metrics called Accuracy,
Recall and F1 score to assess the performance of all above
methods.

Accuracy = (TP + TN)/(TP + FP + TN+ FN) (13)

Precision = TP/(TP + FP) (14)

Recall = TP /(TP+FN) (15)

F1-score = 2 ∗ P ∗ R/(P + R) (16)

For our work, the next location prediction task is a
multi-classification problem. We applied Accuracy metric to
measure global performance of all methods. But Accuracy
is not a fair measure for unbalanced data sets. Therefore
Recall and F1-score are needed for our work. For every
location in the test dataset, take a lacation called West
Lake Park as a example, the TP is True Positive ration cor-
responds to the proportion of West Lake Park correctly
predicted West Lake Park. The FN is False Negative ratio
refers to the proportion of West Lake Park is incorrectly
predicted other location. The FP is False Positive ratio refers
to the proportion of Other location incorrectly predicted
West Lake Park. The TN is True Negative ratio refers
to the proportion of other location correctly predicted other
location. For the two metrics, final value is equals to every
location’s average value.

D. Results and Discussions

1) AOI property Match: The purpose of the property
Match is to match the AOI label for all stay points.
For example, taking the car ID=125870, 1539 stay points
correspond to 326 AOIs in Shantou, China, Fig.5 shows the
clustering result. On the left of this figure, the clustering
result of all stay point of the car is represented here. The
detailed results of the area ’Local A’ is showed in the right
of Fig.5. These colorful points mean that they have been
merged into the same AOI; the same color stands for the
same AOI. But these gray points indicate that they have not
merged and match an exclusive AOI label for themselves.

2) Performance of Sem-LSTM: The proposed Sem-
LSTM incorporates semantic and sequence information to
improve the model performance. We evaluate our method
with the baseline methods on five private car users datasets.
Table III details the result of these methods:

Firstly, we can find all neural network-based meth-
ods, including RNN, LSTM, GRU, ST-GRU, and Sem-
LSTM, which focus on modeling temporal sequence in-
formation, usually have better performance on prediction
precision than SVM and RF. Such as the results of datasets
ID=107737, the accuracy of Sem-LSTM, ST-GRU, GRU,
LSTM, and RNN improved approximately 52.42%, 44.36%,
31.29%, 23.56%, and 56.18%, compared with the SVM,
and recall improved approximately 80%, 70.42%, 48.95%,
48.13%, and 39.3%. Compared with RF, the accuracy
improved 33.33%, 25.27%, 12.2%, 4.47% and 37.09%,
and recall improved 49.06%, 39.4%, 17.93%, 17.11% and
8.28%. This is mainly because SVM and RF are difficult to
model complicated, nonstationary temporal sequence data,
and other neural network-based methods can better deal
with this problem.

Secondly, to verify whether the Sem-LSTM can model
semantic information. We compared the Sem-LSTM
and ST-GRU model. Taking data sets ID=108470 and
ID=125870 as an example, The ID=108470 has 930 stay
point records for 17 months, and ID=125870 has 1539 stay
point records for 11 months. Thus the former is sparser than
the latter. For the stationary dataset ID=125870, Sem-LSTM
and ST-GRU performed almost the same performance.
While for the sparser data set ID=108470, we can find
Sem-LSTM outperformed the ST-GRU model significantly
by a large margin, the accuracy of Sem-LSTM improved
21.3%, the recall improved 33.2% than ST-GRU, indicat-
ing that Sem-LSTM benefits from considering semantic
information. Besides, we discover that LSTM outperformed
the RNN on datasets ID=116853 and 125870, which may
be due to the advantage of LSTM over RNN. For the
two denser datasets, LSTM has the advantage of dealing
with long term dependencies and solving gradient vanishing
problem.

3) Sensitive of context window size: We further studied
how the context window size affects the performance of
the Sem-LSTM model. Generally, a larger context window
of input can model a more comprehensive target location’s

Fig. 5. Clustering result of original stay data of car ID=125870 in Shantou.
The ’local A’ is the detailed presentation of AOI cluster result.



TABLE III
THE PREDICTION RESULTS OF SEM-LSTM MODEL AND OTHER NASELINE METHODS ON DIFFERENT CAR USER DATASETS

Data set Metric Random Baseline* SVM RF RNN LSTM GRU ST-GRU Sem-LSTM

107737
Accuracy 0.0969 0.2993 0.4902 0.8611 0.5349 0.6122 0.7429 0.8235

Recall 0.0021 0.0289 0.3391 0.4219 0.5102 0.5184 0.7331 0.8297
F1-score 0.0021 0.0255 0.2781 0.4368 0.4879 0.5103 0.7151 0.8147

108470
Accuracy 0.1859 0.2992 0.3702 0.8932 0.5027 0.6086 0.4238 0.6368

Recall 0.0183 0.0222 0.0821 0.4357 0.3052 0.4706 0.2017 0.5391
F1-score 0.0183 0.0102 0.0727 0.4899 0.3328 0.4747 0.2093 0.5559

116853
Accuracy 0.0618 0.1469 0.3516 0.8291 0.8544 0.5994 0.8737 0.9286

Recall 0.0053 0.0059 0.1284 0.3231 0.9126 0.5225 0.9077 0.9194
F1-score 0.0054 0.0015 0.1038 0.3318 0.9142 0.5333 0.9113 0.9274

125870
Accuracy 0.0254 0.0897 0.2926 0.7740 0.8807 0.6591 0.9739 0.9883

Recall 0.0056 0.0137 0.1987 0.3071 0.9565 0.3032 0.9811 0.9931
F1-score 0.0046 0.0078 0.1745 0.2794 0.9433 0.2956 0.9811 0.9918

379972
Accuracy 0.1503 0.3427 0.5176 0.8574 0.5116 0.6186 0.7447 0.7326

Recall 0.0032 0.0222 0.2124 0.2507 0.4314 0.5028 0.7110 0.7115
F1-score 0.0031 0.0167 0.1892 0.2571 0.4368 0.5341 0.7217 0.7155

* Means that randomly select a location as current prediction result.

(a) Accuracy

(b) Recall

Fig. 6. Performance with vary context window size of Sem-LSTM model

contexts. However, it needs more compute resources and
time. Here, We varied the context window size from 1
to 7 and used Accuracy and Recall Metrics to observe
our model. In Fig.6, we first find that both Accuracy and
Recall increase with the broader context window size; when
window size from 2 rises to 3, the performance improves
significantly; from 3 rises to 6, shows a constant increase
trend; From 6 rise to 7, the performance of our model
is stable. Unlike large-scale datasets, location records are
relatively sparse, so a small context window such as 5 is
suitable to model the location’s context influence.

4) Case Study: For a better understanding of the user’s
interest used in Sem-LSTM. Fig.7 describes a case that
shows the excellent performance of user ID=108470’s
randomly-selected fifteen constant visit records in five days.

Fig. 7. An example of prediction result. The comprision of location
suquence between ground truth and prediction.

In the upper of the picture, we visualized the location
sequence on Amap. The purple polygon stands for AOI’s
boundary; all stay points lie in the same boundary belong
to the same AOI. Obviously, due to the embedding of
semantic information, the prediction result is approaching
accurate location records. Fig.7, we also observe that the
lower weight means that a lack of a location’s stay time
and frequency, which makes it challenging to model the
semantic information. Such as the NO.3 and NO.9 are hotel
and park respectively, as a result of the user is seldomly
visit this type of location, the weight value of them is lower
than other location with higher semantic weight. Therefore,
two error prediction locations emerged in the prediction
sequence. At the same time, other locations with higher
weight have a stable prediction result. In conclusion, Our
model is capable of modeling users’ sequential patterns
more effectively via embedded semantic information.



VI. CONCLUSION

In this study, we design a semantic LSTM network to
model private car users’ mobility regularity. Besides mod-
eling the spatiotemporal contexts, we employ AOI property
and users’ interest to mine the users’ travel patterns further,
contribute to improving the performance of the prediction
model. Compared to baseline methods, we proposed the
Sem-LSTM model perform excellent prediction results on
five real-life users’ datasets. In future work, we will study
the correlation between private cars and other vehicles on
the road to further mine the mobility of the entire city.
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