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Spatial–temporal event prediction is a particular task for multivariate time series forecast-
ing. Therefore, the complex entangled dynamics of space and time need to be considered.
This task is an essential but crucial loop in future smart cities construction, which can be
widely applied in urban traffic management, disaster monitoring and mobility analysis. In
recent years, video-like spatial–temporal modelling has been the most common approach
in many deep learning models. However, the video-like modelling approach cannot con-
sider some latent region-wise correlations other than geographic spatial distance informa-
tion. To overcome the limitation, we propose a novel neural network framework, Adaptive
Dual-View WaveNet (ADVW-Net), for the urban spatial–temporal event prediction. By
integrating the spatial representations from Convolutional Neural Network (CNN) and that
from adaptive Graph convolutional neural network (GCN), our proposed model can capture
not only the geographic correlations but also some latent region-wise dependencies from
the input data. In addition, the effective architecture, WaveNet, can be transferred to
region-wise spatial–temporal prediction scenarios for long-range temporal dependencies
learning. Experimental results on three urban datasets demonstrate the superior perfor-
mance of our proposed model.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

The urban population has proliferated with urbanization, bringing safety and sustainability challenges. The essential but
significant loop of future smart cities is the predictable dynamics in the complex and substantial urban area [1]. For urban
transportation, if the intelligent systems can predict the citywide traffic flow or taxi orders, some scheduling strategies can
be arranged to reduce traffic congestion or improve ride-hailing demand response. For urban security, if the criminal or dis-
aster incidents can be predicted in advance, the loss of life and property can be reduced, and the emergency security
decision-making can also provided for the government. However, the most challenging issue is modelling the complex spa-
tial–temporal dynamics in urban systems.

In the early stages, some classic time series modelling methods and traditional machine learning models were adopted in
spatial–temporal prediction tasks. For instance, the self-exciting point, ARIMA and Random Forest were widely used in
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spatial–temporal prediction [2,3]. Nevertheless, in these traditional methods, the spatial–temporal correlations are usually
separated, so they are challenging to achieve satisfactory results. In recent years, deep learning models with convolutional
neural network (CNN) and recurrent neural network (RNN) as the mainstream have achieved impressive performance in
vision systems and sequence modeling [4,5]. Some previous works combine the CNN-based models with RNN-based models
in spatial–temporal prediction [6–8]. In this manner, the spatial–temporal data needs to be processed into video-like inputs
[9]. Specifically, the spatial areas should be divided into small grids equally on the longitude and latitude axes respectively.
Time dimensions should be divided into different snapshots at a specific time granularity. Then the spatial–temporal events
need to be mapped into the spatial grids and time snapshots of their occurrence. The value in the spatial grid of one time
snapshot, similarly to the pixel value, represents the frequency of such spatial–temporal events. The video-like input format
is compatible with CNN and the spatial–temporal joint features can be captured by the deep neural network stacked with
CNNs and RNNs. Many previous works have demonstrated the effectiveness of these hybrid deep learning models [10–
15]. However, the most significant limitation of the video-like modeling approach is that only the geographic proximity fea-
ture is considered. Specifically, according to the first law of geography, the nearby items are related to each other. However,
the urban system is more complex, and there are more latent spatial correlations that only geographic proximity cannot be
represented. For instance, the similar Points of Interest (POIs) in different urban regions could lead to the similar patterns of
certain spatial–temporal events, even if these regions are far apart. If the POIs data is taken consideration into deep models,
there are still two main disadvantages. The one is that the complete POIs data is usually difficult to access. Another one is
that the POIs data is not transferable among different cities. To address these bottlenecks, we propose an adaptive graph
method to capture the latent correlations among different regions. As far as we know, the graph structure is a fruitful
approach to reveal the relations between different nodes, and the graph deep learning methods are widely applied in trans-
portation and other fields [16–25]. In our model, the graph structure can be learned adaptively from the spatial–temporal
sequences in selected spatial regions and temporal snapshots, and the graph representation can be updated adaptively by
graph convolutional network (GCN). Some high-level latent spatial correlations can be learned automatically without any
external data in this way.

Although GCN can effectively capture the spatial correlations from non-Euclidean structures, its global weight sharing
mechanism could limit the capability to learn fine-grained local features in spatial proximity. While the main advantage
of CNN is that its local weight sharing mechanism has a stronger capability to aggregate the spatial proximity features.
Therefore, GCN and CNN should be a mutually complementary relationship in spatial representation learning. As shown
in Fig. 1, the difference between the two paradigms is revealed. To improve the capability of spatial representation learning
from the above directions, we propose Adaptive Dual-View WaveNet (ADVW-Net) in this paper. In spatial perspective, dual-
view representations are integrated in this model: pixel-view representation and graph-view representation. The frontier is
obtained by CNN model from the video-like inputs while the latter is obtained by GCN model from the adaptive graph struc-
ture. Then we compose the dual-view representation as a hybrid representation to enhance the complete spatial represen-
tation. In temporal perspective, we combine our proposed dual-view module with the architecture of WaveNet, which is a
more efficient long-short term deep sequence modeling framework compared with RNN-based models. In summary, our
contributions are summarized as follow:

� To the best of our knowledge, it is the first exploration to combine the pixel-view features with graph-view features to
enhance the spatial representation in region-wise spatial–temporal prediction tasks.

� We have improved the internal architecture of traditional WaveNet, so that the model is transferred from 1D temporal
signals scenario to 2D spatial–temporal signals scenario.

� We improve the generation approach of the adaptive graph structures. The adaptive GCNmodel can learn the graph struc-
ture from the input data, enhancing the association with the original input data.

� We evaluate our model with three different domain urban datasets. The experimental results have demonstrated the
effectiveness and universality of our model in different urban spatial–temporal prediction tasks.

In the remainder of this paper, we begin with the related work on region-wise spatial–temporal prediction methods in Sec-
tion 2. Then we briefly review the background of CNN, GCN, WaveNet and modeling approach for region-wise spatial–tem-
poral prediction in Section 3. The dataset processing and proposed methodologies in this research are presented in Section 4,
followed by the experimental results and analysis in Section 5. The final section concludes the achievements of this research
and proposes some future directions.
2. Related Work

The earliest research on spatial–temporal prediction task is based on the classical time series modeling approach. One
mainstream approach is Autoregressive Integrated Moving Average (ARIMA) and its variants. Based on classical ARIMA
model, many variants were also proposed in many different domains, for instance, traffic flow prediction, wind forecasting
and epidemic control [26–28]. Another one is self-exciting point method, which simulates the changing patterns of spatial–
temporal events by stochastic process modeling. And the variants of this model has been applied in urban crime and earth-
quake prediction [29,2]. Although these methods have satisfactory mathematical interpretability and elegant formulas, they
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Fig. 1. The two different methods for spatial representation learning. Fig. 1(a) represents the learning paradigm in CNN, whose different filters can capture
the different spatial proximity features efficiently. Fig. 2(b) represents the learning paradigm in GCN, which can capture the spatial correlations effectively
from non-Euclidean structures even if the spatial distances of different grids are far away from each other..
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cannot take full advantage of big data and automatically learn complex patterns from data. To enable the latent patterns of
data to be further automatically discovered, some data-driven methods based on statistical learning have been introduced
into this field. Especially some ensemble statistical learning models such as Random Forest and Xgboost has been widely
used in urban traffic and air pollution prediction [30,31]. However, there are still two main limitations of these statistical
learning methods: The one is that the superior performance usually relies on experienced feature engineering. Another
one is that the spatial and temporal patterns are captured separately in these methods. This means that some spatial–tem-
poral entanglement features are difficult to extract automatically.

In the recent five years, the deep neural networks (DNN) have become a fruitful approach to address the problems of com-
plex feature engineering and entanglement feature learning, for their powerful feature-extraction automatically. In some
previous work, some DNN models have been tentatively applied in spatial–temporal prediction. In [32,33],the DNN-based
model was first applied in trajectory prediction and urban air quality prediction respectively. To further explore the methods
of spatial–temporal joint representation learning, some hybrid deep learning models are presented. Among them, ConvLSTM
[8] is the milestone which is the first work to capture spatial–temporal coupling features through CNN and LSTM simulta-
neously. Based on ConvLSTM, many improved variant models were proposed. In [34], Wang Yunbo et al. proposed PredRNN,
a improved version of ConvLSTM, which address the problem of high-level information loss by spatial–temporal memory
unit. In [35], Zhang Junbo et al. proposed an efficient CNN-based model to predict region-wise urban flow. In [36], a deep
multi-view hybrid model was proposed to forecast ride-hailing demand. But this series of deep models are based on the
video-like inputs. This modeling approach reflects the geographical proximity feature but ignores some other inner correla-
tions among different grids. The graph structure is the appropriate approach to describe the region-wise correlations. Espe-
cially in traffic prediction, many graph-based deep learning models were developed. The most common framework is that
the structural spatial correlations are captured by graph neural network and the temporal correlations are captured by some
RNN-based, CNN-based or attention-based models. For instance, DCRNN [19] and T-GCN [37] are the combined models of
GCN and RNN, ST-GCN [38] and Graph WaveNet [39] are the combined models of GCN and CNN, GMAN [40] is the combined
model of GCN and attention network. Although these graph-based deep learning models have achieved satisfactory perfor-
mance in learning structural spatial–temporal data, the main bottleneck is the non-predefined graph structure. In order to
refine the high-level correlations between regions, some researchers began to construct regional correlation graphs by some
empirical methods such as traffic flow interaction and POI similarity [17,41,42]. However, these graph modeling methods
require certain domain knowledge and experience. In addition to traffic prediction, there is usually no definable graph struc-
ture in other region-wise urban spatial–temporal prediction tasks. In recent works, both GraphWaveNet [39] and STAG-GCN
[43] combine the adaptive graphs with defined graphs for traffic flow prediction, which can adaptively learn some useful
latent correlations without external data and domain knowledge. Motivated by these two work, we discovered the potential
of adaptive graph learning in spatial–temporal prediction tasks. We assume that if the geographical proximity feature can be
combined with adaptive graph feature, the region-wise urban spatial–temporal prediction tasks can be greatly improved.
However, these two works both construct adaptive graph by randomly initialized embedding. This operation leads to fewer
connections with the original data and easily causes oscillations during the training phase. Hence, we attempt to design a
novel adaptive graph generator that can employ original data feature to tackle this limitation in this paper.

Different from all the previous literature, we first integrate the pixel-view representation and adaptive graph-view rep-
resentation. More importantly, even without external inputs such as POIs, our proposed model can still learn some intrin-
sically correlated features beyond geographic proximity, and can be generalized to multiple spatial–temporal prediction
scenarios.
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3. Preliminaries

3.1. Convolutional Neural Network

Convolutional Neural Network (CNN) was proposed by Lecun first in 1995[4]. Up to now, the variations of CNN has been
developed rapidly and achieved satisfactory performance in various image recognition-related tasks. The key to employing
CNN is to slide the different filters on the image to aggregate the neighbor pixel-level value by learnable parameters via the
multi-channel features. We define the convolution operation in the mathematical form as:
z u; vð Þ ¼
Xm
i¼1

Xn
j¼1

xi;j � ku�i;v�j ð1Þ
where xi;j represents a pixel value in an image and ku�i;v�j represents a parameter in one filter. In CNN model, setting more
filters can obtain more different latent features and the parameters in different filters can be optimized automatically during
back propagation process. In addition, another two important hyper-parameters, the size of filters and the stride of filters
should be preset in convolution operation. The size of the filter is used to determine the granularity of spatial feature extract-
ing while the stride of filters is used to control the sampling frequency of feature learning. These hyper parameters need to
be adjusted to equilibrium state according to different application scenarios.

Also, with the development of CNN, its application scenarios have gradually diversified. For instance, 1D CNN is also an
efficient method for modeling time series, which achieves the goal by aggregating temporal instead of spatial neighbor fea-
tures. In this paper, we apply the CNN models to capture spatial and temporal features simultaneously.

3.2. Graph Convolutional Neural Network

Graph Convolutional Neural Network (GCN) is a special case of CNN whose convolutional operation is on graph structured
data. The size of traditional CNNs’ filters are fixed and based on regular pixel-level grids. The irregular node neighbors in the
graph structure make the convolution operation difficult. To overcome the application difficulties in graph, spectral-based
and spatial-based approach have been developed [44,45]. The limitation of spectral-based GCN is that the Laplacian matrix
needs to be known, in other words, the structure of the graph must be static. But spatial-based GCN does not have such lim-
itation. In this paper, our model is based on the spatial approach proposed by Kipf et al. [46], which is defined as:
Hlþ1 ¼ r bD�1
2bA bD�1

2HlWl
� �

; bA ¼ Aþ I ð2Þ
Where Hlþ1 is the hidden state in the lþ 1ð Þth layer, Hl is the hidden state in the lth layer,W
l is the learnable parameter of the

lth GCN layer. When l ¼ 0;H0 is the initial feature matrix. A and I denotes the original adjacency matrix and identity matrix

respectively. bA denotes the self-accessible graph adjacency matrix. bD represents the degree matrix of bA. The operation ofbD�1=2AbD�1=2 is to normalize bA for training stability. r denotes the activation function, which increase non-linearity to the
output.

3.3. WaveNet

WaveNet is a fruitful method in deep sequence learning, which has been widely used in acoustic modeling. The tradi-
tional WaveNet model can predict the result of the tth point based on the first t-1 points of a sequence, so it can be used
to predict the value of sampling points in the speech. The basic formula is as follows:
p xð Þ ¼
YT
t¼1

p xt j x1; . . . ; xt�1ð Þ ð3Þ
In terms of model structure, WaveNet is an efficient time series prediction model based on CNN, and also combines residual
connections and skip connections to better capture long-term dependencies. We analyze its specific model structure in
Section 4.

3.4. Region-wise Spatial–temporal Prediction

There are two mainstream spatial–temporal prediction scenarios: station-wise and region-wise respectively. In station-
wise scenario, defined stations are provided. But in region-wise scenario, the regions usually need to be divided by geo-
graphic location. In most previous works, an entire area is usually divided into H*I small areas evenly based on latitude
and longitude. To ensure the continuity in time dimension, the common approach is to generate continuous and discrete
time snapshots by certain time slot unit. An event that occurs in the timestamp t, area (i, j) can be regularized into the cor-
responding time snapshot according to the division of geographic regions and time slots. Events that occur in the same grid
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in the same time slot are aggregated and the number of events in a grid is similar to the pixel value. Consequently, the video-
like sequences are established. In this paper, our aim is to predict the next snapshot by historical ones, which is defined as:
Xt ;Xtþ1; . . . ;XtþT�1½ ��!XtþT ð4Þ
4. Methodologies

The proposed deep learning framework ADVW-Net is displayed in Fig. 2. As reveal in Fig. 2(a), The framework consists of
embedding layer, stacked Spatial–Temporal WaveNet (STWN) layers and output layer. The input of ADVW-Net is a historical
continuous spatio-temporal event map and the output is the predicted event map in the next time step. As illustrated in
Fig. 2(b), aSTWN layer is constructed by an adaptive dual-view module (ADVM) and a gated temporal convolution layer
(Gated TCN). The Gated TCN layer consists of two parallel temporal convolution layers (TCN-a and TCN-b) while the ADVM
is composed by the adaptive GCN model and CNN model. From the spatial perspective, our model can capture some latent
structural spatial dynamics by involving adaptive GCN model. From the temporal perspective, our model can capture spatial
dependencies at different temporal levels by stacking multiple STWN layers. For instance, at the bottom STWN layer, ADVM
receives short-range temporal information while at the top STWN layer, ADVM tackles long-range temporal information. In
addition, to accelerate the convergence speed in training phase and prevent the loss of shallow information, we adopt the
residual connection and skip connection in each STWN layer.Fig. 3.

4.1. Embedding layer

The original input X0 is a four-dimensional tensor with the size L;H; I;1½ � where L is the length of the spatial–temporal
sequences, H and I are discrete size of urban area. The dimension of the original feature is 1, The aim of embedding layer
is to enhance the feature representation of the original inputs, which is defined as:
Xe ¼ tanh We � X0 þ beð Þ ð5Þ

WhereWe 2 R1 � C and be 2 RC are respectively the weight and bias of the embedding layer. We use tanh function in this case.
We get the output of embedding layer as Xe 2 RL� H� I� C .

4.2. Temporal Convolution Layer

We adopt the dilated causal convolution as our temporal convolution layer (TCN) to capture the temporal dynamics of a
region. Dilated causal convolution networks can capture long-range temporal information by stacking the same layers. Dif-
Fig. 2. the overview of ADVW-Net is presented in left sub-Fig. (a) and the details of STWN layer is presented in right sub-Fig. (b)..
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Fig. 3. The overview of dilated causal convolution network with kernel size 2. When the dilation factor increases, the time distance that can be captured
increases accordingly.
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ferent from RNN-based models, dilated casual convolution networks can process long-range sequences efficiently without
recursive manner, which accelerates the calculation speed and alleviates the gradient explosion problem through parallel
computation manner. The dilated causal convolution extracts long-range dynamics from the sequences through increasing
the dilation factor layer by layer. Also, in order to maintain the consistency of sequential convolution operations, the zero
padding mechanism is involved in this case. The computation process of dilated causal convolution operation is illustrated
in Fig. 2. Mathematically, the dilated causal convolution operation of x with C at step t is represented as:
xIC tð Þ ¼
Xk�1

s¼0

C sð Þx t � d � sð Þ ð6Þ
where d is the dilation factor which controls the skipping distance, x is the 1D sequence input with length l and dimension
d; k is the kernel size of filters. By stacking dilated causal convolution layers with dilation factors in an increasing order, the
receptive field of TCN also increases. This stacked structure enables TCN to capture long-term dependencies from complex
sequences with less computation burden, which avoids the recursive learning process similarly to RNN-based models.

4.3. Gated TCN

Gating mechanism is a effective approach to control the information flow in sequence learning, which is widely used in
some variants of RNN model. Also, this efficient mechanism is involved in 1D CNN-based models to enhance deep sequence
learning capabilities. As shown in Fig. 2(b), Gated TCN is composed of two TCN modules, TCN-a and TCN-b respectively. In
this case, TCN-a is used as temporal learner while TCN-b is treated as gating controller. The inputs of Gated TCN should be
reshaped as the three-dimensional tensors with size Nf ; L;C

� �
. Nf ¼ H � I means the total number of grid regions in a city. The

region-wise temporal dynamics need to be learned individually and the formulation of Gated TCN for one region is defined
as:
xg ¼ r xIC1 h1ð Þ þ b1ð Þ � tanh xIC2 h2ð Þ þ b2ð Þ
Xg ¼ kNi¼0 xg

� � ð7Þ
where h1; h2 b1 and b2 are the model parameters, � is element-wise product operation. In this case, Sigmoid function is usu-
ally selected to control the ratio of information passed. The notation k represents the concentration operation. After concen-
trating the individual region-wise representation xg , we can obtain the global region-wise representation Xg 2 RNf � L� C

4.4. Adaptive Dual-View Module

As illustrated in Fig. 4, Adaptive Dual-View Module aims to learn regular video-like spatial–temporal features and irreg-
ular structural correlation features simultaneously. The regular video-like spatial–temporal features are captured by CNN
model. In spatial–temporal prediction tasks, the grid-based video-like series are basic but important elements, whose spatial
correlations can be captured efficiently by CNN models. In our framework, the outputs of Gated TCN are pushed into CNN
model. Note that, the outputs of Gated TCN Xg should be reshaped as L;H; I;C½ �. We apply the CNN layer to each of

Xg i; :; :; :½ � 2 RH� I� C , which is defined as:
hcnn ¼ kLi¼0ReLU CNN Xg i; :; :; :½ �� �� � ð8Þ
The notation k represents the concentration operation. After the convolution and concentration processes, the output hcnn of
CNN should be reshaped in the form L;Nf ;C

� �
.
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Fig. 4. The detailed architecture of Adaptive Dual-View Module in Kth STWN Layer and the framework of the adaptive graph generation..
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Only geographic distance-based inner correlation can be reflected from the grid-based spatial representation. However,
the distance-based manner cannot represent some high-level patterns in urban systems such as the regional function cor-
relation and region-wise OD flow interaction. Graph is an appropriate structure to represent these relationship in real-word
but the lack of prior knowledge and the entanglement of multiple correlations hinder the pre-definition of the whole graph.
Hence, we propose an adaptive approach to generate graph structure from original data and improve the generated graph
iteratively during training process.

In the work[39], the adaptive graph method is first presented in spatial–temporal prediction task but the graph embed-
ding is initialized randomly. This initialization approach not only separates the association with the original data but also
cause the instability in training process. In addition, not all urban regions have strong correlation with the patterns of other
regions such as some event sparse region. With regard to the correlation between the event sparse regions and other non-
sparse regions may involve more noise. First, we filter out sparse regions based on the missing rate d of regional events on
the time scale, and reserve the non-sparse regions as graph vertices. Given Nr reserved regions and the reshaped input tensor
Xa 2 RNr �L�C , we define the adaptive graph as:
Aadp ¼ ReLU SoftMax XaWa � UaX
T
a

� �� �
ð9Þ
where Wa 2 RL�C�d and Ua 2 Rd� L�C are learnable parameters in adaptive graph generator. The adaptive mechanism allows the
graph generator to perform parameter learning during the training process based on the input original data and learn the
latent graph structure from the data automatically.

Meanwhile, the representation of adaptive graph is captured by the spatial GCN model. The corresponding graph feature
matrix is actually the selected output of Gate TCN model. Given the output of Gated TCN as Xg 2 RNf � L� C , we can obtain the

selected tensor Xs 2 RNr � L� C without sparse regions. In this case, we apply the spatial GCN model to each of Xs :; i; :½ � 2 RNr �C .
The calculation of spatial GCN is simple, which is defined as:
hgcn ¼ kLi¼0ReLU bD�1
2bAadp

bD�1
2 � Xs :; i; :½ � �Wg

� �
bAadp ¼ Aadp þ I

ð10Þ
where Wg is the learnable parameter in spatial GCN, hgcn is the output of spatial GCN.
The last step is to combine the outputs of CNN and GCN. The specific method is to sum the representations of the corre-

sponding regions, which is defined as:
hM ¼ hC � hG ð11Þ
where hC ;hG and are respectively the latent representation from CNN and GCN. hM denotes the mixed representation. The
notation � represents corresponding position sum operator. Note that, the alignment technique is based on the index.
We can obtain the index by the non-sparse region and then add the graph latent representation into the corresponding
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spatial position. Accordingly, we obtain the hybrid representation that contains both geographical distance and high-level
latent correlation information.
4.5. Residual Connection

The residual connection is involved to prevent the loss of low-level information as the number of network layers deepens.
In the work [47], the residual network was first proposed and achieved the state-of-art performance in image recognition. In
our model, we expect to reserve the initial information before Gated TCN and Adaptive Dual-View Module in each Spatial–
Temporal WaveNet (STWN) layer. The formula is defined as:
1 http
2 http
hS ¼ Wr � hI þ hM ð12Þ
where hS is the output of each STWN layer, hI is the initial input of each STWN layer,Wr is the learnable parameters of resid-
ual connection.
4.6. Output Layer

The stacked STWN layer is to capture multi-level spatial–temporal dynamics from the original data. Hence, we need to
reserve the low-level and high-level information from STWN layer and combine them together as the input of the output
layer. This function is achieved by skip connections, which is defined as:
hO ¼
XK
K¼0

hk
S ð13Þ
where hk
S denotes the representation from the kth STWN layer and hO denotes the final representation from the stacked STWN

layer. Actually, the skip connections are conducted to sum the output from different STWN layers. Then the input tensors of
the output layer hSkip should be reshaped as H;W; L � C½ � to meet the requirement of CNNs. In the output layer, the input ten-
sors are passed to two stacked CNNs, which is defined as:
bXtþT ¼ ReLU CNN ReLU CNN hOð Þð Þð Þð Þ ð14Þ
4.7. Loss Function and Pseudo Code

To stabilize the training process, we apply Huber loss in this case, which is defined as:
L XtþT ; bXtþT

� �
¼ 0:5 � XtþT � bXtþT

� �2
if jXtþT � bXtþT j < 1

jXtþT � bXtþT j � 0:5 otherwise

8<
: ð15Þ
5. Experiments and Analysis

The training details are displayed in this section, and some experimental results are presented to show the performance
of our model.Table 1.
5.1. Dataset Processing

In this paper, three datasets in different domains are adopted to demonstrate the effectiveness of our model, Uber order
dataset, urban crime dataset and urban fire dataset respectively. The urban crime and fire datasets in this paper are collected
from a public safety data repository managed by San Francisco government1, and the focused area is defined in San Francisco
city. The Uber order dataset is from New York’s Uber official statistics2. To prevent the noise caused by some outliers, we limit
the spatial scope of the raw data. To ensure the data abundance in each time slot, we set one hour as a time slot in Uber dataset,
one day as a time slot in urban crime and fire datasets. And considering the balance between fine-grained prediction and data
sparsity, we divide the spatial range in these three datasets as 20*10, 20*20, 20*16 grid map respectively. The details about
these three datasets are displayed in Table 2. In all subsequent experiments, we divide the training dataset, validation dataset
and testing dataset according to the ratio of 7: 2: 1.
s://datasf.org/opendata/
s://www1.nyc.gov/nyc-resources/agencies.page
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Table 1
Details about three different dataset.

Dataset Spatial range (Lat*Lon) Temporal range Time slots grid map

Uber 40:628;40:830½ � � �74:05;�73:88½ � 2014=04=01� 2014=08=31 3628 20*10
Crime 37:71;37:80½ � � �122:51;�122:38½ � 2003=01=01� 2018=06=30 5600 20*20
Fire 37:75;37:80½ � � �122:46;�122:38½ � 2014=06=31� 2019=06=31 1803 20*16

Table 2
Performance comparison of all methods on three datasets in terms of RMSE MAE and MAPE.The best and second best results are bolded and starred in the table
respectively.

Algorithms Merics Uber Crime Fire

ARIMA RMSE 1.2461 0.1934 0.3217
MAE 0.3102 0.0673 0.1028
MAPE 0.0759 0.0421 0.0377
R2 0.9067 0.9124 0.9336

XGBoost RMSE 0.8135 0.1572 0.2610
MAE 0.2707 0.0514 0.0866
MAPE 0.0568 0.0278 0.0286
R2 0.9320 0.9487 0.9678

GRU RMSE 0.7626 0.1295 0.2332
MAE 0.2462 0.0443 0.0753
MAPE 0.0494 0.0210 0.0228
R2 0.9546 0.9677 0.9803

Conv-LSTM RMSE 0.7458 0.1146 0.2201
MAE 0.2336 0.0421 0.0702
MAPE 0.0481 0.0196 0.0210
R2 0.9678 0.9765 0.9873

PredRNN RMSE 0.7378 0.1083 0.2174
MAE 0.2289 0.0401 0.0694
MAPE 0.0466 0.0190 0.0199
R2 0.9715 0.9801 0.9892

ST-ResNet RMSE 0.7425 0.1104 0.2189
MAE 0.2316 0.0406 0.0697
MAPE 0.0471 0.0193 0.0204
R2 0.9702 0.9790 0.9887

DMVST-Net RMSE 0.7306 0.1032 0.2108
MAE 0.2268 0.0394 0.0678
MAPE 0.0456 0.0189 0.0197
R2 0.9756 0.9843 0.9921

ST-Transformer RMSE 0.7182* 0.0984* 0.2011*
MAE 0.2173* 0.0372* 0.0645*
MAPE 0.0418* 0.0184* 0.0192*
R2 0.9782 0.9879 0.9948

DCRNN RMSE 0.7526 0.1187 0.2254
MAE 0.2401 0.0433 0.0725
MAPE 0.0487 0.0201 0.0214
R2 0.9702 0.9810 0.9891

T-GCN RMSE 0.7563 0.1201 0.2304
MAE 0.2425 0.0442 0.0734
MAPE 0.0489 0.0204 0.0216
R2 0.9693 0.9781 0.9884

Graph WaveNet RMSE 0.7268 0.0992 0.2076
MAE 0.2204 0.0378 0.0662
MAPE 0.0426 0.0190 0.0197
R2 0.9764 0.9858 0.9935

ADVW-Net RMSE 0.6730 0.0922 0.1892
MAE 0.2014 0.0337 0.0610
MAPE 0.0381 0.0172 0.0181
R2 0.9827 0.9932 0.9981
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5.2. Training Details and Comparison Algorithm

For our model, the hidden dimension of embedding layer, Gated TCN layer, GCN layer are all set as 32. The input time step
of our model is set as 12 and the output time step is 1, the dimension of learnable parameters in adaptive graph generator is
set as 36 and the missing rate threshold d is set as 0.6 by default. The Adam optimizer is used in training process of ADVW-
Net. The batch size is set as 16 in all subsequent experiments. We applied the technique of exponential decay learning rate
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with the initial learning rate of 0.005. And the early stop strategy is used in training process to avoid over-fitting if the val-
idation loss begins to keep increasing.

To verify the performance of our model, eleven algorithms are compared with ADVW-Net, including ARIMA [26], XGBoost
[48], GRU [49], Conv-LSTM [8], PredRNN [34], ST-ResNet [36], DMVST-Net [36], ST-Transformer [50], DCRNN [19], T-GCN
[37] and GrapWaveNet [39]. Some details of these state-of-art models are set as:

1. ARIMA: ARIMA is a classical time series regression model. We assume that the value in next time slot is only related to
the value in the last time slot. Hence, we set the auto-regressive term as 1, the integrated term as 0, the moving aver-
age term as 0, respectively. In this case, ARIMA is actually a first-order autoregressive model.

2. XGBoost: XGBoost is a state-of-art ensemble statistical learning model, which is integrated by tree models. Multiple
tree models can effectively extract diverse features automatically from data. The number of iterations is set as 100, the
maximum tree depth is set as 10.

3. GRU: GRU is a popular variant of recurrent neural networks, which has been widely used in deep sequence learning
tasks. The number of GRU layers is set as 2, the number of hidden unit is set as [64,64], the input length is set as 12 and
the learning rate is set as 0.005.

4. Conv-LSTM: Conv-LSTM is the first deep learning model that couples spatial and temporal information by replacing
traditional LSTM units with convolution operations, which has been successfully applied in precipitation prediction.
The number of Conv-LSTM layers is set as 2, the number of filters is set as [32,32], the size of filters are set as 3*3,
the input length is set as 12 and the learning rate is set as 0.005.

5. PredRNN: PredRNN can be seen as a improved version of Conv-LSTM. This model can solve the problem of high-level
information loss in historical sequences by adding spatiotemporal memory units. The number of PredRNN layers is set
as 2, the number of filters is set as [32,32], the size of filters are set as 3*3, the input length is set as 12 and the learning
rate is set as 0.005.

6. ST-ResNet: ST-ResNet is a simple but efficient CNN-based spatial–temporal prediction model. Spatial–temporal fea-
tures in different time period can be captured by ResNet, the superior variant of CNN. Considering the universality
of spatial–temporal prediction tasks, we only apply the nearest temporal features in this case. The number of CNN lay-
ers is set as 5, the size of filters are all set as 3*3, the input length is set as 3 and the learning rate is set as 0.001.

7. DMVST-Net: DMVST-Net is a hybrid model that combines spatial, temporal and semantic information. For spatial
view, the scope of local CNN is set as 5*5, size of filters are set as 3*3, and dimension of the output is set as 32. For
the temporal view, the input length is set as 12. For semantic view, we use Pearson correlation coefficient to construct
graph and the size of graph embedding is set as 16. The learning rate of the whole model is set as 0.001.

8. ST-Transformer: ST-Transformer is a model that integrates CNN and Transformer. The number of CNN layers is set as
2, the number of filters is set as [32,32], the size of filters are all set as 3*3, the dimension of feed-forward layer is set as
64, the number of attention head is set as 4, the input length is set as 12 and the learning rate is set as 0.001.

9. DCRNN: DCRNN is a model that integrates GCN and GRU. In this case, we convert the grid maps into adjacency graphs
according to the region neighbor relationship, each region as a node and the connection weight of adjacent regions is
1, otherwise it is 0. The number of diffusion step is set as 2, the size of graph embedding is set as 32, the dimension of
GRU hidden layer is set as 64, the input length is set as 12 and the learning rate is set as 0.001.

10. T-GCN: T-GCN is a model that integrates GCN and GRU. In this case, we do the same operation as in DCRNN. The num-
ber of GCN layers is set as 2, the size of graph embedding is set as 32, the dimension of GRU hidden layer is set as 64,
the input length is set as 12 and the learning rate is set as 0.001.

11. GraphWaveNet: Graph WaveNet is a model that integrates GCN and WaveNet. In this case, we do the same operation
as in DCRNN. The number of Graph WaveNet layers is set as 4, the size of graph embedding is set as 32, the dimension
of TCN layers is set as 32, the input length is set as 12 and the learning rate is set as 0.001.

5.3. Result Analysis

We evaluate the effectiveness of proposed framework ADVW-Net in this section. Four metrics are used in evaluation the
prediction performance of each algorithm, respectively as the Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percent Error (MAPE) and R-Squared (R2) whose definitions are as follows:
RMSE ¼ 1
n
Rn

i¼1 XtþT � bXtþT

� �2
� 	1

2

ð16Þ

MAE ¼ 1
n
Rn

i¼1 XtþT � bXtþT




 


 ð17Þ

MAPE ¼ 1
n
Rn

i¼1

XtþT � bXtþT
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Since the prediction task in our paper is actually a regression task, the classical regression evaluation metric RMSE and MAE
are applied, showing the absolute error between the predicted value and the real value. The purpose of MAPE is to measure
the percentage error between the predicted value and the real value. For the three metrics, the lower RMSE, MAE and MAPE
are, the better the model performs. Note that, MAPE needs to mask the region with a label of 0 when evaluating the predic-
tion performance. The purpose of R2 is to show how well the model fits the data. Note that, the higher R2, the better the
model fits.

5.3.1. Overall Performance
In Table 2, the comparison results on ARIMA, XGBoost, GRU, Conv-LSTM, PredRNN, ST-ResNet, DMVST-Net and ST-

Transformer are displayed. We conducted 10 independent experiments and the best results of each metric on the testing
datatset are in boldface.

From Table 2, we find that the classic time series prediction model ARIMA and statistical learning model XGBoost still
have some gaps with deep learning methods in three metrics. The reason may be that they have limited capabilities to cap-
ture the complex and dynamic features from the spatial and temporal scales simultaneously. Furthermore, the performance
of GRU is significantly better than that of ARIMA and XGBoost, but it is significantly worse than other hybrid deep learning
models. This implies that spatial information plays an important role in spatio-temporal prediction tasks, therefore modeling
only on the time scale is not enough.

Obviously, ADVW-Net achieves better performance than other methods in terms of all three metrics. Specifically, our
model outperforms at least 6.29%, 7.31%, 8.85% in RMSE, MAE and MAPE on Uber Order dataset, the improvement ratios
of RMSE, MAE and MAPE are at least 6.30%, 8.92%, 6.52% on Urban crime dataset and the improvement ratios of RMSE,
MAE and MAPE are at least 5.91%,5.42%, 5.72% of improvements on Urban Fire dataset, which further confirms that our pro-
posed model ADVW-Net is a practically effective solution for urban events prediction. Such significant improvements can be
explained from two perspectives. First, in spatial perspective, some deep learning models like Conv-LSTM, PredRNN and ST-
ResNet, only focus on the effect of geographic distance on the correlations between spatial regions. However, there are many
latent correlations at the regional level that cannot be represented in Euclidean space. Thus, the model without considering
the these latent correlations cannot achieve a higher accuracy. Similarly, for some GCN-based methods such as T-GCN and
DCRNN, the performance is even lower than that of CNN-based methods such as Conv-LSTM and PredRNN, which shows that
CNN’s local weight sharing mechanism is better than GCN’s global weight sharing mechanism on region-wise spatial predic-
tion tasks. The performance of GraphWaveNet with adaptive dynamic graphs is significantly improved compared with other
GCN-based methods. Second, in temporal perspective, we consider multi-level temporal information simultaneously by
stacked STWN layers, so the Gated TCN model is more efficient and stable than RNN-based models and self-attention-
based models in training process.

5.3.2. Case Study For Global Prediction
In order to reveal the effectiveness of our model in a more intuitive way, we randomly choose six consecutive time slots

from dataset to show the prediction performance of ADVW-Net. To enhance the credibility of performance in visualization,
g. 5. The ground truth map, predicted map and absolute error map of selected six consecutive time slots from two groups on Uber dataset..
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Fig. 6. The ground truth map, predicted map and absolute error map of selected six consecutive time slots from two groups on Crime dataset..

Fig. 7. The ground truth map, predicted map and absolute error map of selected six consecutive time slots from two groups on Fire dataset..
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we provide two random groups of visualization in this case. The visualization in Fig. 5, Fig. 6 and Fig. 7 are for Uber dataset,
Crime dataset and Fire dataset respectively. Each figure contains two sub-figures: sub-figure (a) represents the first group
and sub-figure (b) represents the second group. For the first group, the time period of Uber is from 10 am, June 1st, 2014
to 15 am, June 1st, 2014, the time period of Crime is from September 1st, 2016 to September 7th, 2016 and the time period
of Fire is from October 1st, 2018 to October 7th, 2018. For the second group, the time period of Uber is from 6 pm, August
10th, 2014 to 11 pm, August 10th, 2014; the time period of Crime is from February 5th, 2017 to February 10th, 2017; the
time period of Fire is from July 1st, 2019 to July 7st, 2019. In each sub-figure, from top to bottom are successively ground
truth, predicted results and absolute errors. Surprisingly, our proposed model ADVW-Net can achieve a high accuracy of spa-
tial–temporal events prediction on different datasets.
5.3.3. Case Study For Adaptive Adjacency Matrix
For these three datasets, we select top 20 regions with dense data to show their sub adaptive matrix adaptive adjacency

matrix and draw the heat map based on the normalized weights of the sub adjacency matrices as shown in Fig. 8. Especially,
the density of the data is sorted in descending order from column 0 to column 19. We select the weights of column 0 for
observation, and mark the top 5 regions with higher values on the grid maps. Note that, for the three datasets, the densest
regions are marked by red and the top 5 regions with higher weights are marked by green.
Fig. 8. The visualization of sub adaptive adjacency matrix for three datatsets and their geographical location marked on grid maps.
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Table 3
Performance comparison of different variants on three datasets in terms of RMSE MAE and MAPE.

Variants Merics Uber Crime Fire

Only graph-level view RMSE 0.7241 0.1021 0.2105
MAE 0.2175 0.0389 0.0694
MAPE 0.0432 0.0193 0.0201

Only pixel-level view RMSE 0.7031 0.1013 0.2015
MAE 0.2123 0.0389 0.0648
MAPE 0.0419 0.0186 0.0194

Graph-level view with all regions RMSE 0.6912 0.0982 0.1935
MAE 0.2108 0.0380 0.0646
MAPE 0.0398 0.0181 0.0187

Graph-level view with random initialization RMSE 0.6958 0.0992 0.1954
MAE 0.2126 0.0378 0.0665
MAPE 0.0405 0.0182 0.0185

Traditional WaveNet RMSE 0.7328 0.1058 0.2162
MAE 0.2276 0.0394 0.0697
MAPE 0.0454 0.0195 0.0206

ADVW-Net RMSE 0.6730 0.0922 0.1892
MAE 0.2014 0.0337 0.0610
MAPE 0.0381 0.0172 0.0181
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From Fig. 8, we can find that the most semantically similar regions are not just some neighboring regions, but also some
regions with relative larger distances. The adaptive graph can establish the correlations between these regions effectively.
5.3.4. Effect of Adaptive Dual-View Module
To verify the effectiveness of Adaptive Dual-View Module in our proposed model, we conduct experiments with ADVW-

Net using five different variants. The details of these four variants are described as below:
Fig. 9. The change trend of three metrics with d.
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1. Only graph-level view: This variant only reserves the adaptive GCN model in Adaptive Dual-View Module. This means
that the prior influence of geographic distance on spatial correlation is not considered, but only the variant is expected
to be able to adaptively learn the spatial latent correlations.

2. Only pixel-level view: This variant only reserves the CNN model in Adaptive Dual-View Module. This means that the
model only considers the impact of geographic distance on spatial correlation, and does not consider other latent
correlations.

3. Graph-level view with all regions: This variant adopts all regional nodes to construct the adaptive graph without con-
sidering the missing rate of temporal information.

4. Graph-level view with random initialization: This variant adopts random initialization approach for adaptive graph
embedding, which does not depend on the input data.

5. Traditional WaveNet: This variant abandons the Adaptive dual-view module, so that it simply captures the temporal
dynamics of each region without considering the spatial correlation between the different regions.

Table 3 shows the average score ofMAE, RMSE, andMAPE of different variants.Wefind that our completemodelworks bet-
ter than the Graph-level viewwith random initializationmodel and Graph-level viewwith all regions model. This means that
learning the graph structure from the existing data instead of randomembedding can better represent the inner correlations of
the data. Meanwhile, filter out some regions with sparse data to construct graph structure can avoid the interference of sparse
signals. Also, we can find that the models with dual views can work better than Only graph-level view model and Only pixel-
level viewmodel. It indicates that pixel-level view and graph-level view can supplement each otherwith someuseful informa-
tion to obtain a superior representation. Amongall the variants, TraditionalWaveNet achieved theworst effect. This implies the
importance of simultaneously considering spatial–temporal dynamics for spatio-temporal prediction tasks.
Fig. 10. The change trend of three metrics with d.
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5.3.5. Parameter Sensitivity Analysis
To further show the effectiveness of our proposed model, we conduct the experiments under different parameter setting,

including the dimension of the learnable parameters in adaptive graph generator (denoted by d) and threshold of regional
temporal information missing rate (denoted by d).

First, we fix d as the default value and change d in the range of [12,24,36,48]. Note that, d is an integer multiple of the
input sequence length. The results are displayed in Fig. 9. When d is equal to 48, the model obtains the best value on the
Uber dataset. When d is equal to 36, the model obtains the best value on the Crime dataset and Fire dataset.

Second, we fix d as the default value and change d in the range of [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. The results are displayed in
Fig. 10. When d is equal to 0.5, the model obtains the best value on the Uber dataset. When d is equal to 0.6, the model
obtains the best value on the Crime dataset. When d is equal to 0.7, the model obtains the best value on the Fire dataset.

6. Conclusion

In this paper, we gain a deeper insight into the urban spatial–temporal event prediction and propose a novel deep learn-
ing framework named ADVW-Net. The experimental results of ADVW-Net are remarkable compared with other traditional
state-of-the-art models, which demonstrates that integration of pixel-level view and graph-level view enhances spatial rep-
resentation to improve the performance of prediction. The visualization on different datasets also reveals that our model has
achieved extraordinarily high accuracy for predicting the event data, whether from numerical perspective or spatial distri-
bution perspective. However, this work has some limitations: (a) The video-like modeling approach for spatial–temporal
events does not consider the real regional function or correlation, which may lead to the lack of practical significance for
the urban event prediction from spatial perspective. (b) Although the spatial–temporal wavenet layer in our model has
achieved superior performance in capturing spatial–temporal dynamics, the representation learning of space and time
dimensions is separate, which is hard to capture some coupling dynamics in spatial–temporal scale. In the future, the
promising direction is to make further improvements on ADVW-Net by proposing more effectiven adaptive graph learning
methods or designing novel deep learning models that can capture spatial and temporal dynamics synchronously.
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